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Abstract
The system of three identical bosons with s-wave inverse square interactions
and zero total angular momentum is investigated within the Faddeev
integrodifferential approach. It is proved that all three bosons can collapse, i.e.
‘fall’ into their centre of mass, if the constant of the interactions is sufficiently
small, namely less than −0.267 . . .

PACS numbers: 21.45.+v, 02.60.Nm, 02.30.Mv, 02.70.Jn

In quantum mechanics [1], the problem of two particles interacting via the inverse square
potential c/x2, where c is an arbitrary real parameter and x is the interparticle distance, is
completely solved. For example, the corresponding theorem for the existence of the solutions
to the Schrödinger equation(

−∂2
x +

c

x2

)
ψ(x; e) = eψ(x; e) x � 0 (1)

with zero angular momentum and an arbitrary real energy e can be formulated as the following
three statements.

First, at any e > 0 and c ∈ (−∞,∞) has the solution ψ(x, e) describing the scattering
state and having a physically acceptable (ψ → 0, x → 0) asymptotics at small distances

ψ(x; e) = O(xq) q ≡ 1
2 +

√
c + 1/4 x → 0.

Second, at any c < −1/4 there is a solid spectrum of negative eigenvalues e and the
corresponding square integrable eigenfunctions describing the bound states.

Finally, the ground state corresponds to the energy e = −∞.
In this state the binding energy |e| of two particles is infinitely large and, owing to the

principle of uncertainty [1], the particles are located in an infinitesimal neighbourhood of their
centre of mass (x = 0). Therefore, it is often said that at c < −1/4 the particles collapse, i.e.
‘fall’ at the point x = 0.

A sufficient condition for the collapse of N quantum-mechanical particles (N > 2) with
two-body inverse square interactions is in general unknown [2] even if the interactions act
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Figure 1. The radius vectors ai , aj , ak of the bosons pi , pj , pk and the corresponding Jacobi
vectors xk and yk .

only in the pairwise s-states. The main aim of the present work is to find this condition
for three identical bosons p1, p2, p3 having zero total angular momentum � and interacting
via S-wave inverse square potentials. To present these potentials we should first clarify the
physical meaning of the three-body coordinates used. For this, we discuss some formulae.

So, in three-dimensional coordinate space R3 we introduce a fixed Cartesian system S3

with the starting point O coinciding with the centre of mass of the three bosons. Let ai be the
radius vector of the boson pi in the system S3. Then we define three pairs of relative Jacobi
coordinates (xk, yk)

xk ≡ aj − ai yk ≡ 2√
3

(ai + aj

2
− ak

)
(2)

where the indices i, j and k form a cyclic permutation of the triad of indices (1, 2, 3): the
index i becomes k, j becomes i and k becomes j . As one can see from figure 1, the Jacobi
vector xk connects the bosons pi and pj , and the Jacobi vector yk is directed from the boson
pk to the centre of mass Ok of the pair (pi, pj ). Finally, let (r,�k) be the hyperspherical
coordinates associated with the Jacobi vectors (2) by the formulae

r = (
x2

k + y2
k

)1/2 � 0 �k = (x̂k, ŷk, ϕk)

ϕk = atan(yk/xk) ∈ [0, π/2] k = 1, 2, 3.

Hence, the three-boson centre of mass is the point O with zero hyperradius (r = 0) and the
distance between any two bosons vanishes, if and only if r = 0.

In our model each of the two bosons pi and pj interacts via the corresponding S-wave
inverse square potential

Vk(xk) = c

x2
k

P 0
k P 0

k ≡ |Y00(x̂k)〉〈Y00(x̂k)| (3)

where Y00 is the spherical function and P 0
k is the projector on the S-state of the bosons pi

and pj . Due to the projectors P 0
k these potentials are the nonlocal interactions. Hence, the

total potential energy V ≡ V1 + V2 + V3 is also the nonlocal and very complicated operator.
Therefore, even in the case � = 0 the explicit and simple formula for the mapping V �

of the three-boson wavefunction � is unknown. But, if � is expanded over the Legendre
polynomials Pb,

�(r, ϕ, u) =
∑

b=2,4,...

√
2b + 1

2
Pb(u)�b(r, ϕ) ϕ ≡ ϕ1 u ≡ (x1y1)

x1y1
(4)
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then, according to the kinematic transformation theory [3], the mapping V� can be represented
as a double infinite series

V �(r, ϕ, u) = c

r2

∑
a,b=2,4,...

Pa(u)

[√
2a + 1

2
δab sec2 ϕ +

∫ 1

−1
du

Pa(u)Ab(ϕ
′)

2 − cos 2ϕ +
√

3u sin 2ϕ

]
.

(5)

Here the angle ϕ′ ∈ [0, π/2] is the function of ϕ and u, Ab(ϕ
′) is the integral

2 cos 2ϕ′ =
√

3u sin 2ϕ − cos 2ϕ Ab(ϕ
′) =

∫ 1

−1
du′Pb(u

′)Pb(u
′′)�b(r, ϕ

′′)

and in the integrand ϕ′′ ∈ [0, π/2] and u′′ are the functions of ϕ′ and u′:

−2 cos 2ϕ′′ =
√

3u′ sin 2ϕ′ + cos 2ϕ′ 2u′′ sin 2ϕ′′ = u′ sin 2ϕ′ +
√

3 cos 2ϕ′.

By using expansions (4) and (5), the Schrödinger equation for �

(H0 + V − E)� = 0 H0 ≡ − (	xk
+ 	yk

)
is reduced to the infinite system of coupled two-dimensional integrodifferential equations for
the components �b. However, this system seems to be unsolvable even numerically.

In contrast to the Schrödinger equation, the Faddeev differential equations [2]

(H0 − E)�k = −Vk� � =
3∑

i=1

�i k = 1, 2, 3 (6)

do not contain the total interaction V . In fact, each Faddeev equation contains only the
corresponding two-body potential. Therefore, by the substitution of

�k(r,�k) = 2r−5/2 cosec 2ϕkU(r, ϕk)Y00(x̂k)Y00(ŷk) k = 1, 2, 3 (7)

the Faddeev equations (6) are reduced to one integrodifferential equation:(
r2∂2

r +
1

4
+ Er2

)
U(r, ϕ) =

(
−∂2

ϕ +
c

cos2 ϕ

)
U(r, ϕ) +

c

cos2 ϕ
s

∫ C+(ϕ)

C−(ϕ)

dϕ′U(r, ϕ′)

(8)

where ϕ ≡ ϕ1, s ≡ 4/
√

3 and the integral limits are the break-lines

C−(ϕ) =
∣∣∣ϕ − π

3

∣∣∣ C+(ϕ) = π

2
−

∣∣∣π
6

− ϕ

∣∣∣ .
As one can see, on the left-hand side of equation (8) all the operators act only on the

argument r, and on the right-hand side the operators act only on the other argument, i.e. on ϕ.
Hence, the left and right sides are equal to a constant p2. Therefore, as Avishai first noted
in [4], the arguments r and ϕ are separated from each other by the substitution

U(r, ϕ) = f (r)g(ϕ).

As a result, one gets two equations connected only by the constant, p2, of separation of
independent variables r and ϕ. It should be emphasized that the first equation(

−∂2
r +

p2 − 1/4

r2

)
f (r) = Ef (r) (9)

is similar in form to equation (1) and the other equation(
−∂2

ϕ +
c

cos2 ϕ

)
g(ϕ) +

c

cos2 ϕ
s

∫ C+(ϕ)

C−(ϕ)

dϕ′g(ϕ′) = p2g(ϕ) (10)
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has to be added by the boundary conditions

g(ϕ) = 0 ∂2
ϕg(ϕ) = 0 ϕ = 0, π/2 (11)

providing the regularity of the Faddeev components (7) at the points ϕ = 0 and ϕ = π/2.
Note that the problem (10), (11) was solved numerically by Avishai [4], but only for

c = 0,−1, . . . ,−6 and, unfortunately, the author used a wrong value s = 1 for the coefficient
s = 4/

√
3. This is a reason to re-examine this problem and investigate it in more detail.

The plan of our further study can be formulated as follows.
First, we compare equation (1) with equation (9) and, as a result, we prove that a three-

boson collapse can take place only if p2 < 0.
Second, we clarify why the well-known method [5, 6] based on the representation

g(ϕ) =
N∑

n=1

bn sin 2nϕ (12)

is inconvenient for numerical study of the problem (10), (11) when c < 0 or p2 < 0.
Finally, as a result of solving this problem by the modified spline-function [7] method [8]

we prove that p2 < 0 if c is sufficiently small, namely c < cb = −0.267 . . .

So, the three-particle equation (9) studied differs from the two-particle equation (1) only
by notation: r plays the role of x, p2 − 1/4 stands for c and E stands for e. Therefore,
the above-mentioned theorem can be applied to equation (9). Hence, under the condition
p2 − 1/4 < −1/4 or p2 < 0, equation (9) has the solution describing the three-boson bound
state with an infinitely large binding energy B = −E = ∞. In other words, all three bosons
can collapse when p is a pure imaginary number, as we wished to prove.

Now, let us analyse the eigenvalue problem (10), (11) in which p2 and g are, respectively,
the eigenvalue and eigenfunction. For any c and p2 = 16 there is the solution g = sin 4ϕ

generating the spurious (�1 + �2 + �3 ≡ 0) solution [3, 9] to the Faddeev equations (6). In
what follows this solution is not considered because it corresponds to the trivial three-boson
wavefunction (� ≡ 0). At c = 0 all the eigenvalues are positive and integer numbers,
namely, p2

1 = 4, p2
ν−1 = (2ν)2, ν = 3, 4, . . . , and for each eigenvalue p2

ν there is only one
eigenfunction g = gν : g1 = sin 2ϕ, gν = sin(2(ν + 1)ϕ), ν = 2, 3, . . . .

By the well-known criterion [5], the exact solution, representable as a finite sum (12),
exists if and only if p2 = (t + 2)2, N = t/2 + 1 < ∞, where t = 4, 6, . . . , and the nonzero
constant c and the coefficients bn obey the well-defined algebraic eigenvalue problem.

For example, at c = 4 and p2 = p2
1 = 36 the exact solution reads [5]

g(ϕ) = sin 2ϕ − 4
5 sin 4ϕ − sin 6ϕ (13)

and the simple methods to calculate the other exact solutions are presented in [5, 6].
The criterion has an important corollary [3]: for any p2 
= (t + 2)2, t = 0, 2, . . . , and

hence for p2 � 0, all the solutions of the problem (10), (11) are the infinite (N = ∞)

expansions (12) whose convergence is not proven analytically.
For a numerical analysis of the convergence of these expansions, we assume that p2 
= t2

at any odd positive t. Therefore, 4n2 − p2 
= 0 for any natural n, and the infinite sum (12) can
be rewritten in a more convenient form for our purpose,

g(ϕ) =
∞∑

n=1

Xn

4n2 − p2
sin 2nϕ bn = Xn

4n2 − p2
n = 1, 2, . . . . (14)

Now, we multiply equation (10) by the function cos2 ϕ and substitute the ansatz (14) in the
equation thus obtained. Then, using for any ϕ and integer n the trigonometric identity

4 cos2 ϕ sin 2nϕ = sin 2(n − 1)ϕ + 2 sin 2nϕ + sin 2(n + 1)ϕ
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and the well-known spectral formulae [3]∫ C+(ϕ)

C−(ϕ)

dϕ′ sin 2nϕ′ = Kn sin 2nϕ Kn = sin 2nπ/3

n sin 2π/3
(15)

we reduce the equation to the infinite but algebraic linear system of homogeneous equations
for the unknown coefficients Xn:(

2 +
12c

4 − p2

)
X1 + X2 = 0

Xn−1 +

(
2 +

4c(1 + 2Kn)

4n2 − p2

)
Xn + Xn+1 = 0 n = 2, 3, . . . .

As one can see, only the second (n = 2) equation does not contain the constant c because,
owing to (15), 1 + 2Kn = 0 only for n = 2. Let us exclude X2 = −(X1 + X3)/2 from the
infinite system and then study the finite subsystem

3

(
1

2
+

4c

4 − p2

)
X1 − 1

2
X3 = 0

−1

2
X1 +

(
3

2
+

4c

36 − 4p2

)
X3 + X4 = 0

Xn−1 +

(
2 +

4c(1 + 2Kn)

4n2 − p2

)
Xn + Xn+1 = 0 n = 4, 5, . . . , N − 1

XN−1 +

(
2 +

4c(1 + 2KN)

4N2 − p2

)
XN = 0 N < ∞.

As is well known [10], this homogeneous system has a nontrivial solution if and only if the
determinant det A of its matrix A is equal to zero which is impossible when A has a dominant
main diagonal, in other words, when all the following relations hold:

|Ann| > |An−1,n| + |An,n+1| n = 1, . . . , N − 1.

Owing to (15) |Kn| � 1/n for all n and by definition c is a real number. Therefore, at
least one of these relations is not valid only for a real p2 in two cases: c > 0, p2 > 4 or
c < 0, p2 < 4N2, and only in these cases may det A vanish. Hence, p2 may be negative
only for negative c when interactions (3) are attractive ones. As A depends on c and p2, the
relation det A(c, p2) = 0 means that the allowed p2 is a function of c: p2 = p2(c), or vice
versa c = c(p2). Then, the matrix A has dimension N − 1 and is the Jacobi matrix [10]. For
any fixed p2 < 4N2 the determinant of this matrix is a polynomial of c of degree N − 1 and
has exactly N − 1 simple zeroes c = c1, c2, . . . , cN−1. Hence, for any fixed c the determinant
has N − 1 different zeroes p2 = p2

ν(c) that we arrange as p2
1(c) < p2

2 < · · · < p2
N−1(c).

As we have established, to calculate the root p2
1 of the equation det A = 0 with one per

cent relative accuracy, one can use a comparatively small N if c > 0 and N should be too large
if c < 0. For example, N = 30 for c = 0.2 while N = 5 × 107 for c = −0.3 when p2 < 0.
In other words, at c < 0 expansions (12) converge too slowly as N → ∞. Therefore, to
calculate p2 and g we have applied another method in which these expansions are not used.

In this method the nodes ϕj of the uniform grid 	ϕ with the step h

	ϕ : ϕj = hj j = 0, 1, . . . ,M h = π/2M
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Figure 2. The solid curves are the eigenvalues p2
1(c) < p2

2(c) < · · · < p2
9(c) as functions of the

non-negative parameter c of interactions (3) and each dot is the point (c, p2
ν ) with the abscissa c

and ordinate p2
ν = (t + 2)2, such that the exact solution (12) with N = t/2 + 1 exists.

are used as collocation nodes, the searched function g is approximated by the cubic spline
S(ϕ) = S3,1(ϕ) of C2-class [7] and, instead of the second-order accuracy approximation

∂2
ϕg(ϕ)|ϕ=ϕj

= S′′
j + O(h2) S′′

j ≡ ∂2
ϕS(ϕ)|ϕ=ϕj

j = 1, 2, . . . ,M − 1

that we have applied in [8], a more accurate fourth-order approximation [7] is used

∂2
ϕg(ϕ)|ϕ=ϕj

= 1

12h2
(S′′

j−1 + 10S′′
j + S′′

j+1) + O(h4) j = 1, 2, . . . ,M − 1.

For this reason, the method described has fourth-order accuracy. To demonstrate its power, we
have solved the problem (10), (11) at c = 4 and M = 1000 and then compared the calculated
eigenvalue p̃2 = 36.0 + 2 × 10−10 and the eigenfunction S with the exact eigenvalue p2 = 36
and eigenfunction (13), respectively. Thus, we have found∣∣∣∣ p̃2

p2
− 1

∣∣∣∣ = O(10−12)

∣∣∣∣S(ϕj )

g(ϕj )
− 1

∣∣∣∣ = O(10−6) j = 1, . . . ,M − 1.

Hence, for the uniform grid formed by one thousand nodes (M = 1000), one may expect
comparatively high relative accuracy. Therefore, we have used this grid for the calculation of
the eigenvalues p2 = p2

ν(c), ν = 1, 2, . . . , plotted by the solid lines in figures 2 and 3 as well
as for the calculation of the corresponding eigenfunctions g(ϕ) = S(ϕ) = gν(ϕ).

As was numerically established, for c ∈ [−10, 100] each (ν = 1, 2, . . . ,M − 1 = 999)

eigenvalue p2 = p2
ν(c) is a monotonically increasing function of c, i.e. p2

ν(c) < p2
ν(c + ε)

for any c and ε > 0, and all M − 1 eigenvalues p2
ν form the monotonically growing set:

p2
ν(c) < p2

ν+1(c) for any c and ν = 1, 2, . . . ,M − 1. Therefore, the zeroes cν of these
eigenvalues form the monotonically decreasing set: cν+1 < cν for any ν = 1, 2, . . . ,M − 1.
In particular, c1 ≈ −0.267, c2 ≈ −0.532 and c3 ≈ −1.167 and only the last significant digits
of these numbers change when M is chosen larger than 1000. Hence, at least at one per cent
accuracy, the desired relation p2 < 0 takes place for any c less than zero cb ≡ c1 = −0.267 . . .

of the minimal (first) eigenvalue p2 = p2
1(c). Therefore, at this c there is a special three-boson

state |ν〉 with ν = 1 and the Faddeev hyperangular component g = g1 corresponding to the
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Figure 3. The thin solid line is the level p2 = 0, the solid curves are the eigenvalues
p2

1(c) < p2
2(c) < · · · < p2

5(c) as functions of the negative parameter c of interactions (3) when

s = 4/
√

3 in equation (10), and each square is the point (c, p2
ν ) with the abscissa c = 0, c = −1

or c = −2 and the corresponding ordinate p2
ν = λ calculated in [4] for s = 1.

value p2 = p2
1(c). In this state all three bosons collapse. At c2 < c < c1 all eigenvalues

p2
ν with ν � 2 are positive and, therefore, in the corresponding states |ν〉 three bosons do not

collapse. Thus, for cn+1 < c < cn, n = 1, 2, . . . ,M − 1 the eigenvalues p2
ν with ν < n are

negative, while all the other eigenvalues are positive. Therefore, for this c all three bosons
collapse in the states |ν〉 with ν = 1, 2, . . . , n and do not collapse in all other states with
ν � n + 1.

So, we have attained our main aim, and now we can formulate the main result as follows:
at zero total angular momentum and sufficiently small constant c of interactions (3), namely
c < −0.267 . . . , all three bosons collapse in the state |1〉.

In conclusion, we discuss a possible application of our method to the investigation of
exotic three-atom clusters having a very large (about a few tens of ångstroms) size [11].

In the cited paper [11] two statements were proved.
First, if the binding energy in an ‘electron+atom’ pair is sufficiently small, three-atom

clusters may arise in the four-body systems formed by three identical atoms bounded by a
single electron.

Second, in these systems the effective ‘atom+atom’ interaction has the leading term c/x2,
in which x is the distance between two atoms and the constant c is negative.

Hence, the model of three identical bosons with interactions (3) and our spline-algorithm
seem to be applicable for the calculation of the wavefunctions and binding energies of the
S-states of three-atom clusters.
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